

122 S. Michigan Ave., Suite 7000 • Chicago, IL 60603-6119 • www.idph.state.il.us

Clostridium difficile in Illinois Hospitals, 2010

Clostridium difficile, also referred to as *C. difficile*, is a common cause of bacterial diarrhea in hospitalized patients. *C. difficile*-associated diarrhea ranges from mild to severe and can sometimes result in severe inflammation of the intestines. The *C. difficile* organism can be found in feces, and is transferred from infected patients or contaminated environmental surfaces to patients via the hands of hospital personnel. Patients also can become infected if they touch objects or surfaces that are contaminated with *C. difficile* and then touch their mouth. Although a person may have the organism in their intestines, it does not usually cause disease until antibiotics alter normal intestinal flora, promoting overgrowth with *C. difficile*.

This report presents information about *C. difficile* from the Illinois Hospital Discharge Dataset for 1999-2010, with emphasis on 2010. The primary utility of the Hospital Discharge Dataset is to follow overall trends in the burden of *C. difficile* in Illinois hospitals. These data are routinely collected and provided to the Illinois Department of Public Health for all acute care hospitals in Illinois. The unit of analysis is the hospital discharge, not the person or patient.

The data presented in this section should be interpreted with caution. Hospital discharge data are collected for billing, rather than disease surveillance. A 2007 study in an Illinois hospital found that only 31 percent of confirmed Methicillin-resistant *Staphylococcus aureus* cases were identified using the first nine diagnosis codes from the Hospital Discharge Dataset (Schaefer, SHEA Annual Scientific Meeting, 2008). However, administrative coding may be more accurate for estimating *C. difficile* rates; one study found the sensitivity to be 78 percent (Dubberke, Emerging Infectious Diseases, 2006). Through 2007, only the first nine diagnosis codes were available to the Illinois Department of Public Health. Beginning in 2008, the Department had access to 25 codes.

The ICD-9 diagnosis code 008.45, appearing anywhere in the list of discharge diagnoses, was used to select cases for this report.

C. difficile Trends, 1999-2010

The data presented in this section include the first nine diagnosis codes listed for each discharge. Rates are calculated by dividing the number of *C. difficile* cases in a given year by the total number of discharges for that year.

Table 1 shows *C. difficile* infections per 1,000 discharges in Illinois for the years 1999-2010. Overall, *C. difficile* rates among patients at Illinois hospitals during this time period increased from 4.5 per 1,000 discharges to 9.9 per 1,000 discharges. During 2010, the last year for which data are available for Illinois, there were 16,262 *C. difficile* infections among 1,644,072 discharges; approximately 1 percent of all hospital discharges had diagnosis codes indicating *C. difficile* infection.

Year	Total number of <i>C. difficile</i> discharges	Total number of discharges	Number of <i>C.</i> <i>difficile</i> discharges per 1,000 discharges	
1999	7,082	1,581,086	4.5	
2000	7,586	1,636,046	4.6	
2001	8,204	1,684,089	4.9	
2002	10,309	1,685,051	6.1	
2003	11,053	1,677,125	6.6	
2004	14,066	1,710,389	8.2	
2005	15,570	1,725,033	9.0	
2006	15,359	1,724,612	8.9	
2007	15,412	1,713,279	9.0	
2008	16,260	1,699,853	9.6	
2009	15,323	1,668,396	9.2	
2010	16,262	1,644,072	9.9	

Table 1. Number of *C. difficile* Infections per 1,000 hospital discharges, 1999-2010

Figure 1 shows the annual *C. difficile* rates (per 1,000 hospital discharges) between 1999 and 2010, and illustrates the steady increase in *C. difficile* rates between 1999 and 2005, after which time the rate remained at this elevated level through 2009, with a slight increase in 2010.

Table 2 shows the number (N) and proportion (%) of *C. difficile* infections stratified by age group for the years 2004-2010. The distribution of *C. difficile* discharges across the age categories remained stable over time, with the exception of the 50-64 year old age category which experienced an increase from 15.3% in 2004 to 19.5% in 2010. Children and teens under 18 years of age had the lowest burden of *C. difficile* infections among hospitalized patients, and the greatest burden of *C. difficile* infections occurred among older individuals, especially those older than 65. Throughout 2004-2010, approximately two thirds of all *C. difficile* infections occurred among individuals aged 65 and older. This information is highlighted in figure 2.

Age range (years)	2004 N (%)	2005 N (%)	2006 N (%)	2007 N (%)	2008 N (%)	2009 N (%)	2010 N (%)
0-4	174 (1.2)	143 (0.9)	176 (1.1)	188 (1.2)	180 (1.1)	162 (1.1)	146 (.9)
5-17	105 (0.7)	107 (0.7)	109 (0.7)	126 (0.8)	168 (1.0)	137 (0.9)	159 (1.0)
18-34	592 (4.2)	627 (4.0)	596 (3.9)	564 (3.7)	657 (4.0)	580 (3.8)	652 (4.0)
35-49	1,123	1,211 (7.8)	1,202	1,198 (7.8)	1,178 (7.2)	1,145	1,329
	(8.0)		(7.8)			(7.5)	(8.2)
50-64	2,147	2,521	2,490	2,723	2,862 (17.6)	2,805	3,168
	(15.3)	(16.2)	(16.2)	(17.7)		(18.3)	(19.5)
65 and	9,925	10,961	10,786	10,613	11,215	10,494	10,808
older	(70.6)	(70.4)	(70.2)	(68.9)	(69.0)	(68.5)	(66.5)

Table 2. Age distribution of *C. difficile* infections among hospitalized patients, 2004-2010

Figure 2. Age distribution of C. difficile infections among hospitalized patients, 2010

The sex distribution of *C. difficile* cases remained relatively stable during this period (2004-2010), with females accounting for 57 percent to 60 percent of *C. difficile* discharges (Table 3).

Sex	2004	2005	2006	2007	2008	2009	2010
Male	5,705	6,419	6,513	6,377	6,853	6,440	6,779
	(40.6)	(41.2)	(42.4)	(41.4)	(42.1)	(42.0)	(41.7)
Female	8,361	9,151	8,846	9,035	9,407	8,883	9,483
	(59.4)	(58.8)	(57.6)	(58.6)	(57.9)	(58.0)	(58.3)

Table 3. Sex distribution of C. difficile infections among hospitalized patients, 2004-2010

C. difficile in Illinois Hospitals, 2010

Beginning in 2008, 25 diagnosis codes were available to the Illinois Department of Public Health for each discharge. Using all 25 codes, 17,857 discharges with a *C. difficile* diagnosis code occurred in 2010, or 10.9 *C. difficile* cases per 1,000 discharges. In 2008, when all 25 codes were included, there were 17,367 discharges coded for *C. difficile*, or 10.2 *C. difficile* cases per 1,000 discharges, and in 2009, there were 16,504 discharges coded for *C. difficile*, or 9.9 *C. difficile* cases per 1,000 discharges.

Conclusions

This report summarizes trends in *C. difficile* in Illinois hospitals during 1999-2010. The burden of *C. difficile* in Illinois hospitals is significant, and the number of cases has more than doubled since 1999.

These data are not without limitations and caution is advised in their interpretation. Due to hospital discharge dataset coding modifications implemented in 2008, the 2010 *C. difficile* discharge data were analyzed using two approaches. In order to compare 2008-2010 *C. difficile* discharge rates with those from 1999-2007, the rates were calculated based on the first nine discharge diagnosis codes. However,

when the *C. difficile* rate for 2010 was calculated using 25 discharge diagnoses codes, the rate was, as might be expected, higher, in large part due to the increased pool of discharge diagnosis codes. Future trend analyses will have to account for this shift in coding practices to make valid temporal comparisons.

One possible explanation for the increasing trend that has been observed in *C. difficile* rates in the last decade is adoption of a more sensitive test for the bacteria in hospitals. Hospitals using the polymerase chain reaction (PCR) test are likely to identify more patients infected with *C. difficile* than hospitals using what was previously the most common test, enzyme immunoassay (EIA) (Morelli, Clinical Gastroenterology and Hepatology, 2004). Another possible contributing factor to the increasing rate is the presence of a strain of *C. difficile* that has been associated with outbreaks and severe disease. A recent study in the Chicago area found that over 60% of cases were infected with this strain (Black, Infection Control and Hospital Epidemiology, 2011).

To have a better understanding of the burden of *C. difficile* in Illinois hospitals, it is necessary to distinguish between health care-facility onset and community-onset cases. Historically, discharge data have not been able to discern whether a disease or condition was acquired during hospitalization. Beginning in 2008, hospitals were required to include a present on admission (POA) code with each diagnostic code. The mandated use of this code, which indicates whether each diagnosis occurred before or after hospital admission, was part of the Centers for Medicare and Medicaid Services' (CMS) Hospital-Acquired Conditions Initiative, in which CMS would no longer pay hospitals extra when patients developed specified complications after admission.

Because the implementation of the POA code was part of a quality improvement strategy explicitly linking payment with health care outcomes, its use in epidemiological studies has not been explored. No published studies have evaluated the validity of the POA variable in hospital discharge data with respect to health care-associated infections such as C. *difficile* and MRSA.

Reliance on administrative databases, such as the Illinois Hospital Discharge Dataset, to assess trends in health care-associated infections, detect outbreaks, and provide inter-facility comparisons is not ideal. Further study will be required to validate POA coding. A personal health care identification number would facilitate linkage of medical records over time and across facilities – both acute and long-term care. This would help identify previous healthcare exposures and track infections.

A hospital-based infection surveillance program, such as the U.S. Centers for Disease Control and Prevention's National Healthcare Safety Network (NHSN), which is currently being used to track central line-associated bloodstream infections and surgical site infections in Illinois hospitals, would provide more useful data on health care-associated infections. Beginning in 2012, hospitals will monitor and report *C. difficile* laboratory data to the Illinois Department of Public Health using NHSN.